Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.385
Filtrar
1.
Dev Comp Immunol ; 140: 104623, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563918

RESUMO

Granulocyte-lineage cells are important innate immune effectors across all vertebrates. Named for conspicuous secretory granules, granulocytes have historically been studied for their antimicrobial roles. Although versions of these cells are found in all vertebrate species examined to date, disparate environmental and physiological pressures acting on distinct vertebrate classes have shaped many of the facets dictating granulocyte biology. Immune pressures further determine granulopoietic constraints, ultimately governing granulocyte functions. For amphibians that inhabit pathogen-rich aquatic environments for some or all their lives, their unique granulocyte biologies satisfy many of their antimicrobial needs. Amphibians also occupy an intermediate position in the evolution of vertebrate immune systems, using combinations of primitive (e.g., subcapsular liver) and more recently evolved (e.g., bone marrow) tissue sites for hematopoiesis and specifically, granulopoiesis. The last decade of research has revealed vertebrate granulocytes in general, and amphibian granulocytes in particular, are more complex than originally assumed. With dynamic leukocyte phenotypes, granulocyte-lineage cells are being acknowledged for their multifaceted roles beyond immunity in other physiological processes. Here we provide an overview of granulopoiesis in amphibians, highlight key differences in these processes compared to higher vertebrates, and identify open questions.


Assuntos
Granulócitos , Hematopoese , Animais , Granulócitos/fisiologia , Hematopoese/fisiologia , Anfíbios , Biologia
2.
Brain Behav ; 12(10): e2732, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36111748

RESUMO

OBJECTIVES: Stroke-induced immunosuppression (SIIS) increases the risk of poststroke infections. We aimed to determine whether failed versus successful thrombolytic therapy (TT) resulted in SIIS-associated changes in peripheral granulocyte markers at 1 week following the insult. METHODS: We collected peripheral blood samples from 19 patients with acute ischemic stroke undergoing TT within 6 h after the onset of their first symptoms and 7 days after the insult. Age-matched controls were sampled on one occasion. We compared the expression of CD15 and CD64 on monocytes, granulocytes, and lymphocytes using flow cytometry. RESULTS: The proportion of granulocytes and CD15+ granulocytes was comparable between controls and stroke patients at both time points. While the proportion of CD15bright granulocytes was also comparable, the mean fluorescence intensity (MFI) of CD15 on this subset was reduced in stroke patients by day 7 but was overall higher at both time points compared to controls. The MFI of CD15 on granulocytes was lower in stroke patients with failed TT than in those with successful TT 1 week after the insult. CONCLUSIONS: Our current results indicate that TT may not only acutely reduce the systemic inflammatory response following stroke but may also play a role in reversing SIIS at a later stage following the insult, as reflected by the higher expression of the CD15 marker on granulocytes following successful TT.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Biomarcadores , Granulócitos/fisiologia , Humanos , Terapia de Imunossupressão , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica
3.
Rheumatology (Oxford) ; 61(3): 913-925, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34559213

RESUMO

Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Assuntos
Artrite Reumatoide/patologia , Membrana Sinovial/citologia , Linfócitos B/fisiologia , Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Heterogeneidade Genética , Granulócitos/fisiologia , Humanos , Macrófagos/fisiologia , Sistema Nervoso Periférico/citologia , Fagócitos/fisiologia , Transdução de Sinais/fisiologia , Análise de Célula Única , Linfócitos T/fisiologia , Transcriptoma
4.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347010

RESUMO

Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.


Assuntos
Eosinófilos/fisiologia , Granulócitos/fisiologia , Pulmão/microbiologia , Tuberculose/microbiologia , Tuberculose/patologia , Adulto , Animais , Feminino , Granulócitos/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Tuberculose Latente/microbiologia , Pulmão/patologia , Macaca mulatta , Masculino , Camundongos Mutantes , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Peixe-Zebra/microbiologia
5.
Cell Death Dis ; 12(6): 594, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103476

RESUMO

Aging is one of the most prominent risk factors for heart failure. Myeloid-derived suppressor cells (MDSCs) accumulate in aged tissue and have been confirmed to be associated with various aging-related diseases. However, the role of MDSCs in the aging heart remains unknown. Through RNA-seq and biochemical approaches, we found that granulocytic MDSCs (G-MDSCs) accumulated significantly in the aging heart compared with monocytic MDSCs (M-MDSCs). Therefore, we explored the effects of G-MDSCs on the aging heart. We found that the adoptive transfer of G-MDSCs of aging mice to young hearts resulted in cardiac diastolic dysfunction by inducing cardiac fibrosis, similar to that in aging hearts. S100A8/A9 derived from G-MDSCs induced inflammatory phenotypes and increased the osteopontin (OPN) level in fibroblasts. The upregulation of fibroblast growth factor 2 (FGF2) expression in fibroblasts mediated by G-MDSCs promoted antisenescence and antiapoptotic phenotypes of fibroblasts. SOX9 is the downstream gene of FGF2 and is required for FGF2-mediated and G-MDSC-mediated profibrotic effects. Interestingly, both FGF2 levels and SOX9 levels were upregulated in fibroblasts but not in G-MDSCs and were independent of S100A8/9. Therefore, a novel FGF2-SOX9 signaling axis that regulates fibroblast self-renewal and antiapoptotic phenotypes was identified. Our study revealed the mechanism by which G-MDSCs promote cardiac fibrosis via the secretion of S100A8/A9 and the regulation of FGF2-SOX9 signaling in fibroblasts during aging.


Assuntos
Senescência Celular/fisiologia , Células Supressoras Mieloides/fisiologia , Miocárdio/patologia , Miofibroblastos/fisiologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Granulócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
7.
Clin Nutr ; 40(6): 4481-4489, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33485710

RESUMO

BACKGROUND & AIMS: Magnesium (Mg2+) is able to modulate the differentiation and proliferation of cells. Mg2+ restriction can trigger neutrophilia, but the processes that result in this change have yet to be investigated and are not fully understood. Hematopoiesis is a complex process that is regulated by many factors, including cytokines and growth factors, and is strongly influenced by nutrient availability. In this context, our objective was to investigate the impact of the short-term restriction of dietary Mg2+ on bone marrow hematopoietic and peripheral blood cells, especially in processes related to granulocyte differentiation and proliferation. METHODS: Male C57BL/6 mice were fed a Mg2+ restricted diet (50 mg Mg2+/kg diet) for 4 weeks. Cell blood count and bone marrow cell count were evaluated. Bone marrow cells were also characterized by flow cytometry. Gene expression and cytokine production were evaluated, and a colony-forming cell assay related to granulocyte differentiation and proliferation was performed. RESULTS: Short-term dietary restriction of Mg2+ resulted in peripheral neutrophilia associated with an increased number of granulocytic precursors in the bone marrow. Additionally, Mg2+ restriction resulted in an increased number of granulocytic colonies formed in vitro. Moreover, the Mg2+ restricted group showed increased expression of CSF3 and CEBPα genes as well as increased production of G-CSF in association with increased expression of STAT3 protein. CONCLUSION: Short-term dietary restriction of Mg2+ induces granulopoiesis by increasing G-CSF production and activating the CEBPα and STAT-3 pathways, resulting in neutrophilia in peripheral blood.


Assuntos
Dieta , Fator Estimulador de Colônias de Granulócitos/biossíntese , Granulócitos/fisiologia , Leucopoese , Magnésio/administração & dosagem , Neutrófilos , Fator de Transcrição STAT3/metabolismo , Animais , Células da Medula Óssea/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cálcio/sangue , Ciclo Celular , Fator Estimulador de Colônias de Granulócitos/genética , Células-Tronco Hematopoéticas/fisiologia , Contagem de Leucócitos , Magnésio/sangue , Deficiência de Magnésio/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/genética
8.
Ann Rheum Dis ; 80(2): 209-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32988843

RESUMO

OBJECTIVES: Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS: Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS: Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS: Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.


Assuntos
Granulócitos/patologia , Lúpus Eritematoso Sistêmico/imunologia , Proteínas de Membrana/análise , Neutrófilos/patologia , Proteoma/análise , Estudos de Casos e Controles , Heterogeneidade Genética , Granulócitos/fisiologia , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Microvasos/metabolismo , Neutrófilos/fisiologia , Fosforilação , Proteômica
9.
J Gynecol Obstet Hum Reprod ; 50(4): 101796, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32413524

RESUMO

INTRODUCTION: Endometriosis is a chronic systemic disease, which influence negatively the quality of life of affected women and responsible for infertility and chronic pelvic pain. Pathophysiology of the disease is still enigmatic, but insufficient immune surveillance may play a role in it. Peripheral natural immune cell function is rarely examined. The aim of the study was to examine phagocyte function of peripheral neutrophil granulocytes and monocytes, whether this phagocytic activity is affected by the presence or removal of endometriotic lesions in women with endometriosis. MATERIAL AND METHODS: Twenty-six preoperative, 13 postoperative samples from women with endometriosis, 23 samples from healthy women, 14 pre- and postoperative samples from the surgical control group were enrolled. Cells were isolated from peripheral blood samples, marked and evaluated for the phagocytosis index with immunofluorescent microscope after phagocyting the zymosane molecules. RESULTS: Phagocyte function of monocytes and neutrophil granulocytes decreased significantly women with endometriosis before surgery compared to healthy controls. However, 7 days after surgery the postoperative values showed significant improvement compared to the preoperative results of women with endometriosis. This increment reached the values of the healthy women. In the surgical control group no difference was detected between the pre- and postoperative outcomes. DISCUSSION: Decreased phagocyte function of the examined cells, which can be the result of the circulating immunosuppressive factors, may play a role in the deficient clearance of ectopic endometrial tissue. Based on the postoperative results, these immunosuppressive factors may be reduced or eliminated 7 days after surgery in women with endometriosis.


Assuntos
Endometriose/imunologia , Granulócitos/fisiologia , Monócitos/fisiologia , Neutrófilos/fisiologia , Fagocitose/fisiologia , Estudos de Casos e Controles , Endometriose/cirurgia , Feminino , Humanos , Imunidade Celular , Período Pós-Operatório
10.
Life Sci Alliance ; 3(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958605

RESUMO

Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Células Supressoras Mieloides/metabolismo , Neutrófilos/metabolismo , Adulto , Idoso , Neoplasias da Mama/imunologia , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Granulócitos/metabolismo , Granulócitos/fisiologia , Humanos , Imunoterapia/métodos , Melanoma/metabolismo , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Neutrófilos/fisiologia , Transcriptoma/genética
11.
Dev Comp Immunol ; 113: 103798, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32745480

RESUMO

The differentiation of distinct leukocyte subsets is governed by lineage-specific growth factors that elicit disparate expression of transcription factors and markers by the developing cell populations. For example, macrophages (Mφs) and granulocytes (Grns) arise from common granulocyte-macrophage progenitors in response to distinct myeloid growth factors. In turn, myelopoiesis of the Xenopus laevis anuran amphibian appears to be unique to other studied vertebrates in several respects while the functional differentiation of amphibian Mφs and Grns from their progenitor cells remains poorly understood. Notably, the expression of colony stimulating factor-1 receptor (CSF-1R) or CSF-3R on granulocyte-macrophage progenitors marks their commitment to Mφ- or Grn-lineages, respectively. CSF-1R is activated by the colony stimulating factor-1 (CSF-1) and interleukin (IL-34) cytokines, resulting in morphologically and functionally distinct Mφ cell types. Conversely, CSF-3R is ligated by CSF-3 in a process indispensable for granulopoiesis. Presently, we explore the relationships between X. laevis CSF-1-Mφs, IL-34-Mφs and CSF-3-Grns by examining their expression of key lineage-specific transcription factor and myeloid marker genes as well as their enzymology. Our findings suggest that while the CSF-1- and IL-34-Mφs share some commonalities, the IL-34-Mφs possess transcriptional patterns more akin to the CSF-3-Grns. IL-34-Mφs also possess robust expression of dendritic cell-associated transcription factors and surface marker genes, further underlining the difference between this cell type and the CSF-1-derived frog Mφ subset. Moreover, the three myeloid populations differ in their respective tartrate-resistant acid phosphatase, specific- and non-specific esterase activity. Together, this work grants new insights into the developmental relatedness of these three frog myeloid subsets.


Assuntos
Granulócitos/fisiologia , Macrófagos/fisiologia , Xenopus laevis/imunologia , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Fatores Estimuladores de Colônias/metabolismo , Esterases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Interleucinas/genética , Interleucinas/metabolismo , Mielopoese , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transcriptoma
12.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630520

RESUMO

Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.


Assuntos
Granulócitos/metabolismo , Neutrófilos/metabolismo , Animais , Evolução Biológica , Evolução Molecular , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Granulócitos/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Neutrófilos/fisiologia , Fagocitose/imunologia
13.
BMC Vet Res ; 16(1): 171, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487098

RESUMO

BACKGROUND: A healthy immune system plays a particularly important role in newborns, including in calves that are far more susceptible to infections (viral, bacterial and other) than adult individuals. Therefore, the present study aimed to evaluate the influence of HMB on the chemotactic activity (MIGRATEST® kit), phagocytic activity (PHAGOTEST® kit) and oxidative burst (BURSTTEST® kit) of monocytes and granulocytes in the peripheral blood of calves by flow cytometry. RESULTS: An analysis of granulocyte and monocyte chemotactic activity and phagocytic activity revealed significantly higher levels of phagocytic activity in calves administered HMB than in the control group, expressed in terms of the percentage of phagocytising cells and mean fluorescence intensity (MFI). HMB also had a positive effect on the oxidative metabolism of monocytes and granulocytes stimulated with PMA (4-phorbol-12-ß-myristate-13-acetate) and Escherichia coli bacteria, expressed as MFI values and the percentage of oxidative metabolism. CONCLUSION: HMB stimulates non-specific cell-mediated immunity, which is a very important consideration in newborn calves that are exposed to adverse environmental factors in the first weeks of their life. The supplementation of animal diets with HMB for both preventive and therapeutic purposes can also reduce the use of antibiotics in animal production.


Assuntos
Bovinos/sangue , Granulócitos/fisiologia , Monócitos/fisiologia , Valeratos/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Bovinos/imunologia , Quimiotaxia/efeitos dos fármacos , Dieta/veterinária , Citometria de Fluxo/veterinária , Granulócitos/citologia , Monócitos/citologia , Fagocitose/efeitos dos fármacos , Explosão Respiratória
14.
Proc Natl Acad Sci U S A ; 117(25): 14395-14404, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513696

RESUMO

Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all-trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5'-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I-binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 (TRIM25) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I-mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I-induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Granulócitos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular Tumoral , Citocinas/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores Imunológicos , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/genética , Regulação para Cima
15.
Shock ; 53(5): 637-645, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31306347

RESUMO

BACKGROUND: Ischemic preconditioning (IPC) protects the myocardium against ischemia/reperfusion injury. Evidence suggests that hyperglycemia inhibits IPC-induced cardioprotection. The effects of hyperglycemia initiated during different phases of IPC on myocardial injury were characterized with emphasis on apoptosis and aggregation of polymorphonuclear granulocytes (PMN). METHODS: Male Wistar rats were subjected to 35 min of myocardial ischemia and 2 h of reperfusion. Control animals were not further treated. IPC was induced by three cycles of 3 min ischemia and 5 min of reperfusion before major ischemia. Hyperglycemia (blood glucose more than 22.2 mmol/L) was induced by glucose administration with or without IPC during different phases (trigger- (before ischemia), mediator- (during ischemia), early reperfusion-phase). One additional group received an anti-PMN-antibody before ischemia. Infarct size was quantified by triphenyltetrazolium chloride staining. Cytochrome C release and B-cell lymphoma two (Bcl-2) expression were assessed by western blot analysis. Poly-ADP-Ribose staining and PMN accumulation were quantified with immunohistochemistry and histochemistry. RESULTS: IPC reduced infarct size compared with control. Hyperglycemia completely abolished IPC-induced cardioprotection independent of the time point of initiation. Hyperglycemia before and during major ischemia but without IPC also slightly reduced infarct size. IPC reduced the accumulation of PMNs. This effect was reversed by hyperglycemia during trigger- and mediator-phase but not by hyperglycemia during reperfusion. Hyperglycemia alone had no effect on PMN accumulation. In all treatment groups, signs of myocardial apoptosis were reduced compared with control. IPC alone, combined with hyperglycemia and anti-PMN treatment, reduced apoptosis by a Bcl-2-associated mechanism. Hyperglycemia alone reduced apoptosis by a Bcl-2-independent pathway. CONCLUSION: Hyperglycemia inhibits IPC-induced cardioprotection independent of its onset. Furthermore, hyperglycemia prevents apoptosis and IPC-induced reduction of PMN aggregation.


Assuntos
Hiperglicemia/complicações , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose , Agregação Celular , Modelos Animais de Doenças , Granulócitos/fisiologia , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar
16.
Shock ; 53(4): 434-441, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31306349

RESUMO

Common X-linked genetic polymorphisms are expected to alter cellular responses affecting males and females differently through sex-linked inheritance pattern as well as X chromosome (ChrX) mosaicism and associated ChrX skewing, which is unique to females. We tested this hypothesis in ex vivo lipopolysaccharide and phorbol ester-stimulated polymorphonuclear granulocytes (PMNs) and monocytes from healthy volunteers (n = 51). Observations were analyzed after stratification by sex alone or the presence of variant IRAK1 haplotype a common X-linked polymorphism with previously demonstrated major clinical impacts. Upon cell activation, CD11b, CD45, CD66b, CD63, and CD14 expression was markedly and similarly elevated in healthy males and females. By contrast, PMN and monocyte activation measured by CD11b, CD66b, and CD63 was increased in variant-IRAK1 subjects as compared with WT. Stratification by IRAK1 genotype and sex showed similar cell activation effect on variant-IRAK1 subjects and an intermediate degree of cell activation in heterozygous mosaic females. The increased membrane expression of these proteins in variant-IRAK1 subjects was associated with similar or increased intersubject but uniformly decreased intrasubject cell response variabilities as compared with WT. We also tested white blood cell ChrX skewing in the healthy cohort as well as in a sample of female trauma patients (n = 201). ChrX inactivation ratios were similar in IRAK1 WT, variant, and heterozygous healthy subjects. Trauma patients showed a trend of blunted ChrX skewing at admission in homozygous variant-IRAK1 and heterozygous mosaic-IRAK1 female subjects as compared with WT. Trauma-induced de novo ChrX skewing was also depressed in variant-IRAK1 and mosaic-IRAK1 female trauma patients as compared with WT. Our study indicates that augmented PMN and monocyte activation in variant-IRAK1 subjects is accompanied by decreased intrasubject cellular variability and blunted de novo ChrX skewing in response to trauma. A more pronounced cell activation of PMNs and monocytes accompanied by decreased response variabilities in variant-IRAK1 subjects may be a contributing mechanism affecting the course of sepsis and trauma and may also impact sex-based outcome differences due to its X-linked inheritance pattern and high prevalence.


Assuntos
Genes Ligados ao Cromossomo X/genética , Granulócitos/fisiologia , Quinases Associadas a Receptores de Interleucina-1/genética , Monócitos/fisiologia , Polimorfismo Genético/genética , Ferimentos e Lesões/sangue , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais , Ferimentos e Lesões/patologia , Adulto Jovem
17.
Stress ; 23(1): 87-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31311393

RESUMO

Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly. The effects of stress hormones on immune cell CKA were also investigated under two in vitro co-incubation conditions, with all three hormones found to exert inhibitory effects on the CKA of PMNs and mononuclear cells. We showed that stress triggered the release of stress hormones which had profound inhibitory effects on the innate anticancer functions of PMNs. These results provide a possible explanation for the relationship between psychological stress and cancer incidence.


Assuntos
Granulócitos/fisiologia , Neoplasias/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Epinefrina/sangue , Epinefrina/fisiologia , Humanos , Hidrocortisona/sangue , Hidrocortisona/fisiologia , Norepinefrina/sangue , Norepinefrina/fisiologia
18.
Clin Transl Oncol ; 22(4): 603-611, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31254252

RESUMO

PURPOSE: Immunotherapy is a new standard first-line treatment for non-small cell lung cancers (NSCLC) with high programmed cell death-ligand 1 (PD-L1) expression (≥ 50%) and second-line treatment regardless of PD-L1 status, though not all patients benefit from this approach. Much effort is ongoing to identify robust prognostic and predictive biomarkers of response to immune checkpoint inhibitors, overcoming PD-L1 that appears limited in its ability to discriminate patient candidates to this new class of anticancer agents. The purpose of this research study is to identify potential new biomarkers for immunotherapy in lung cancer. METHODS: Fifty-three consecutive patients with advanced NSCLC treated with nivolumab were enrolled in the study. All the patients received a blood analysis looking for the relationship between different populations of baseline white blood cells and granulocytic myeloid-derived suppressor cells (Gr-MDSC) detected by flow cytometry, to identify and characterize patients with poor likelihood of benefit from nivolumab in NSCLC second-line setting, regardless of clinical feature and PDL1 expression. RESULTS: Univariate analysis showed that high baseline levels of Gr-MDSC and low baseline CD8/Gr-MDSC ratio are associated with significantly better (P = 0.02) response to immunotherapy treatment. Log-rank tests suggested a significant improvement in OS and PFS with high baseline levels of Gr-MDSC levels (≥ 6 cell/µl), low absolute neutrophil count (< 5840/µl), high eosinophil count (> 90 /µl), and NLR < 3. The multivariate analysis showed a statistically significant improvement for PFS (P = 0.003) and OS (P = 0.05) in favour of the identified good prognostic Gr-MDSC-linked asset group, compared with the poor prognosis group. CONCLUSION: The role of Gr-MDSC appears interesting as a potential biomarker in NSCLC patients receiving immune-checkpoint inhibitors. Further analyses are needed to confirmed and study in deep the role of these particular cells and their role in cancer response and progression during ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Granulócitos/fisiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/fisiologia , Nivolumabe/uso terapêutico , Idoso , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Imunofenotipagem , Imunoterapia , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843967

RESUMO

Bacteremia is a hallmark of invasive Streptococcus suis infections of pigs, often leading to septicemia, meningitis, or arthritis. An important defense mechanism of neutrophils is the generation of reactive oxygen species (ROS). In this study, we report high levels of ROS production by blood granulocytes after intravenous infection of a pig with high levels of S. suis-specific antibodies and comparatively low levels of bacteremia. This prompted us to investigate the working hypothesis that the immunoglobulin-mediated oxidative burst contributes to the killing of S. suis in porcine blood. Several S. suis strains representing serotypes 2, 7, and 9 proved to be highly susceptible to the oxidative burst intermediate hydrogen peroxide, already at concentrations of 0.001%. The induction of ROS in granulocytes in ex vivo-infected reconstituted blood showed an association with pathogen-specific antibody levels. Importantly, inhibition of ROS production by the NADPH oxidase inhibitor apocynin led to significantly increased bacterial survival in the presence of high specific antibody levels. The oxidative burst rate of granulocytes partially depended on complement activation, as shown by specific inhibition. Furthermore, treatment of IgG-depleted serum with a specific IgM protease or heat to inactivate complement resulted in >3-fold decreased oxidative burst activity and increased bacterial survival in reconstituted porcine blood in accordance with an IgM-complement-oxidative burst axis. In conclusion, this study highlights an important control mechanism of S. suis bacteremia in the natural host: the induction of ROS in blood granulocytes via specific immunoglobulins such as IgM.


Assuntos
Granulócitos/fisiologia , Explosão Respiratória/fisiologia , Streptococcus suis/imunologia , Doenças dos Suínos/microbiologia , Acetofenonas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Granulócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Streptococcus suis/efeitos dos fármacos , Suínos , Doenças dos Suínos/imunologia
20.
PLoS One ; 14(12): e0226435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869378

RESUMO

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Granulócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Transcriptoma , Proliferação de Células/genética , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Granulócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucopoese/genética , Monócitos/fisiologia , Mielopoese/genética , Proteínas de Fusão Oncogênica/genética , Oncogenes/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA